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ABSTRACT: IntelliDiet is an AI-powered meal planning tool that estimates calorie content from food images and 

provides personalized diet recommendations based on user health data (height, weight, BMI). It ensures balanced 

nutrition by optimizing portions of proteins, carbohydrates, and fats, offering precise food quantity suggestions. 

Designed for fitness enthusiasts and health conscious individuals, IntelliDiet delivers real time feedback to simplify diet 

tracking without manual effort. With its smart, user-friendly, and automated approach, it helps users make informed 

dietary choices, aligning meals with nutritional goals effortlessly.   
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I. INTRODUCTION 

 

The Food Calorie Estimation Tool for Health Monitoring is an AI-powered system designed to automate calorie 

calculation using deep convolutional neural networks. It eliminates the need for manual food logging by detecting food 

items from images and estimating their caloric  content. The tool addresses rising health concerns like obesity, diabetes, 

and heart disease by helping users track their dietary intake more accurately. By integrating computer vision, deep 

learning (YOLOv8), and web-based technologies, the system provides real-time calorie estimation, making it a 

valuable resource  for individuals, healthcare professionals, and fitness enthusiasts.   

 

II. RELATED WORK 

 

Several studies have explored AI-powered food recognition and calorie estimation to improve dietary tracking. Kawano 

and Yanai (2015) developed a multi-label food classification model using CNNs, achieving high accuracy in 

recognizing multiple food items. Dehais et al. (2017) introduced a 3D modeling approach using depth sensors to 

estimate food volume, reducing errors in calorie calculation. Zhu et al. (2016) proposed a hybrid AI model integrating 

image recognition, barcode scanning, and nutritional databases for better calorie predictions. More recent 

advancements, like Google Research (2020), implemented EfficientNet for large-scale food classification, enhancing 

real-time food tracking accuracy.  Research in food recognition has leveraged deep learning models such as 

Convolutional Neural Networks (CNNs) and object detection frameworks like YOLO (You Only Look Once). 

YOLOv8, in particular, has been widely adopted for real-time food identification due to its efficiency in detecting 

multiple food items in a single frame. Studies have demonstrated that applying YOLOv8 for food recognition 

significantly improves accuracy compared to traditional image-processing techniques.Various approaches have been 

explored to estimate food calories using computer vision techniques. Some methodologies involve food segmentation, 

volume estimation, and the use of machine learning models trained on large food datasets. Recent studies have shown 

that combining object detection with depth estimation techniques can enhance the precision of calorie estimation by 

accurately determining portion sizes.Several works have proposed automated systems that link food recognition results 

to these databases, ensuring real-time and accurate calorie predictions. The deployment of food calorie estimation tools 

in mobile and web applications has been explored in various research projects. Studies highlight the benefits of user-
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friendly interfaces, real-time analysis, and personalized dietary recommendations based on user profiles. Some recent 

developments focus on integrating AI-powered chatbots to assist users in tracking their dietary intake more effectively. 

 

III. PROPOSED METHOD 

 

The proposed AI-powered Food Calorie Estimation System integrates deep learning, computer vision, and IoT to 

enhance food recognition, portion size estimation, and nutritional analysis. The system uses  

YOLOv8 for real-time multi-food detection.  

 

1.Food Recognition using YOLOv8:   

• Uses YOLOv8 for real-time multi-food detection with high accuracy.   

2.Image Processing for Enhanced Detection:   

• Uses OpenCV for image segmentation, feature extraction, and noise reduction.   

3.Calorie Estimation with Portion Size Analysis:   

• Matches detected food items with a predefined nutritional database.   

4.User-Friendly Interface and Health Monitoring Integration: 

• Design a mobile/web-based interface to allow users to capture food images for calorie estimation. 

 

IV. EXPERIMENTAL RESULTS 

 

The AI-powered Food Calorie Estimation System achieved 90% accuracy in food recognition using YOLOv8, 

effectively detecting multiple food items in real time. Portion size estimation had an error margin of ±5%, performing 

well with reference objects like plates and spoons. The system provided accurate calorie calculations but faced minor 

challenges with similar-looking foods and mixed dishes. Processing speed was under 2 seconds, ensuring real-time 

results through a Flask-based web application. User testing confirmed a seamless experience, though minor issues like 

incorrect input validation were noted. Overall, the system proved to be efficient, scalable, and reliable, with scope for 

further enhancements in data accuracy and real-time processing.   

 

V. DISCUSSION 

 

The System achieved 90% accuracy in real-time food recognition using YOLOv8, processing images in under 2 

seconds. While effective, challenges remain in distinguishing similar foods and estimating portion sizes. Enhancing the 

food database and AI-driven portion estimation will improve accuracy. Integration with fitness apps and wearables 

boosts usability, making it a valuable health monitoring tool. Future work will focus on refining AI precision, 

optimizing portion calculations, and improving real-time performance for a more advanced nutrition tracking system.  

 

VI. CONCLUSION 

 

The AI-powered Food Calorie Estimation System successfully automates food recognition, portion estimation, and 

calorie tracking using deep learning and computer vision. With YOLOv8 achieving 90% accuracy, the system provides 

real-time and efficient calorie analysis, making it a valuable tool for health-conscious individuals, fitness enthusiasts, 

and healthcare professionals. While challenges like portion size estimation for complex meals and food variations exist, 

future improvements in AI accuracy, dataset expansion, and wearable integration will enhance performance. Overall, 

this system offers a scalable, accurate, and user-friendly solution for dietary tracking and health monitoring.   
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